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Variational Propagation Constant Expressions for
Lossy Inhomogeneous Anisotropic Waveguides

Yinshang Liu and Kevin J. Webb, Member, IEEE

Abstract—Based on reciprocal relationships for the adjoint
operator, we derive a variational formulation for the propaga-
tion constant satisfying the divergence-free condition in lossy
inhomegeneous anisotropic waveguides whose media tensors have
all nine components. In addition, with some advantages over
previous representations, two variational formulations have been
derived for waveguides with the transverse part of the media
tensors decoupled from the longitudinal part. However, to obtain
a variational formulation for a general lossy reciprocal problem
the waveguide must be bi-directional. Each of the variational
expressions results in a standard generalized eigenvalue equation
with the propagation constant appearing explicitly as the desired
eigenvalue. The stationarity of the formulations is shown. It
is also shown that for a general lossy nonreciprocal problem
the variational functional exists only if the original and adjoint
waveguide are mutually bi-directional,

1. INTRODUCTION

ECENTLY, finite element methods have been applied

extensively to waveguide problems [1]. When using finite
element methods, it is desirable to use a variational functional.
A thorough study of the variational electromagnetic problems
based on the reaction concept introduced by Rumsey [2], [3]
and Harrington [4] has been presented by Chen [5]. Also,
many different variational expressions for the propagation
constant have been derived for each specific problem {6}-[10].
However, further investigation of variational expressions for
the propagation constant is still needed. For instance, Berk’s
{3] and Kumagai’s formulations [9], [10] for the propagation
constant are restricted to lossless media. Spurious modes
[11] will occur in Rumsey’s [2] formulations for the prop-
agation constant, since the divergence-free condition is not
enforced in the variational expression. Davies [7] as well as
Chew’s formulations [8] for the propagation constant only
work for media with the longitudinal part of the medium
tensor decoupled from the transverse part. The Euler equation
for another of Davies’ formulations [6] in terms of the full
magnetic field vector does not satisfy the vector magnetic field
equation, as pointed out by Hoffmann [12]. Each of the above
formulations has some failings. Hence, a new formulation for
the propagation constant in general waveguides is needed.
For generality, the new formulation must be able to be used
in waveguides containing lossy inhomogeneous anisotropic
media where the tensor constitutive parameters have all nine
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components. In addition, the divergence-free condition must
be enforced in the variational formulation. In this paper, a
systematic procedure for the derivation of such a formula-
tion is presented. Additionally, two variational formulations
for reciprocal waveguides with the longitudinal part of the
medium tensor decoupled from the transverse part are derived.
Applied in finite element methods, these formulations will
have some advantages over previously published formulations
in the literature since these new formulations are more general
or accurate.

For a general lossless (reciprocal or nonreciprocal) problem,
the variational functional always exists. For a general lossy
reciprocal problem, the variational functional exists only if the
waveguide is bi-directional. For a general lossy nonreciprocal
problem, the variational functional exists only if the original
and adjoint waveguide are mutually bi-directional. (The orig-
inal and adjoint waveguide are mutually bi-directional if for
each mode with the propagation constant + in the original
waveguide there exists a mode with propagation constant
—~ for the adjoint waveguide. A waveguide is bi-directional
if modes with propagation constant v and —v will always
exist simultaneously for the same waveguide). An example
of a lossy nonreciprocal waveguide and its corresponding
variational formulation for the propagation constant has been
proposed by Chen [5]. While the divergence-free condition
is not enforced in Chen’s formulation, the variational for-
mulation given by our procedure will automatically satisfy
the divergence-free condition. We begin with a discussion of
variational formulation issues, such as the choice of inner
product, variational variables (magnetic field or electric field
or both electric and magnetic field; full vector, i.e., three
components of the field or only the transverse component
of the field), the stationarity of variational formulations for
the propagation constant and the existence of the adjoint
field. Next we derive the various variational expressions in
the form of standard generalized eigenvalue equations where
the propagation constant appears explicitly as the desired
eigenvalue.

II. VARIATIONAL FORMULATION ISSUES

Consider a differential equation
M-P=0 )

where M is a linear operator for describing the underlying
physical problem and P is the unknown field quantity. The
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corresponding functional, F, can be represented as [5], [6]
F = (P*|M - P). (2)

In (2), P® denotes the solutions with the corresponding
adjoint operator M, i.e., P satisfies M* - P® = 0. We have

§F = (§P%|M - P) + (P*|M - 6P)
= (6P*|M - P) + (M® - P*|6P).

Hence, the first variation of the functional F vanishes
when M - P = 0 and M° - P* = 0. In (2), (P*|M - P)
represents the inner product between P?¢ and M - P. In
electromagnetic problems, M is given by Maxwell’s equations
and P represents the electromagnetic field. The formulation for
the functional in (2) has several drawbacks.

First, direct use of the functional in (2) does not yield a
desirable eigenvalue matrix equation. If we write Maxwell’s
equations in the form of M - P = 0, we have for the vector
magnetic field source-free wave equation

Vxe 1.VYxH-w-H=0 3)

with H being the magnetic field vector, € the permittivity
tensor of the medium and 7 the permeability tensor of the
medium. With the differential operator in (3), the functional

F=(M*Vxe ' VxH-wn ' H) @)
will be variational about the fields that satisfy (3). Direct use
of this functional in the solution of a waveguide problem
gives either a matrix eigenvalue equation with frequency as
the eigenvalue [13], or a quadratic eigenvalue equation with
propagation constant as the eigenvalue [14]. The latter could
be seen by assuming that the field has e?(“*=72) dependence,
with « being the propagation constant. With this assumption,
the functional in (4) has the form

F =(H|(V:—jy2) x et
(Vi — j78) x H - % - H) ()

where V = V; — jyz and V, = £(9/3z) + §(3/0y).
This functional will yield a quadratic eigenvalue equation
with v being the eigenvalue. For computational simplicity,
it is desirable that the formulation should yield the standard
generalized eigenvalue equation form

A-Xy—AB-X\=0 6)

with A = v or v2 and A and B being either differential or
matrix operators.

Second, the functional F from (2) introduces another set of
unknowns, P?.

Third, spurious modes will occur in using the functional
given in (4) [11]. This is because the vector that satisfies (3)
does not automatically satisfy the divergence-free condition
V - B, where B = TH. In the formulations presented in this
paper, the divergence-free condition will be incorporated into
the variational functional to avoid the occurrence of spurious
modes. Variational formulation issues will be discussed in the
following:

1) Choice of inner product—real inner product or complex
inner product: The first step to simplify the variational

2

formulation in (2) is to find P¢. The choice of inner
product will determine the adjoint operator M and the
corresponding adjoint solution P*, and hence the vari-
ational functional F'. The real inner product is defined
as

mm:/fgw (7
whereas the complex inner product is defined as
= [ 1"-gas ®)

with f* being the complex conjugate of f, and f and
g being two arbitrary vectors. The integral is two-
dimensional, since two-dimensional waveguide prob-
lems are considered. Since the operator for Maxwell’s
equations is hermitian in a lossless system, we would
usually choose a complex inner product in the lossless
case. Therefore, the operator will be self-adjoint if we
choose a complex inner product. Hence, in a lossless
system the adjoint solution P® will be related to P by
P¢ = P. Equation (4) becomes

F=(HVxe ! VxH-WTE H). Q)

Many useful formulations may be deduced from (9), for
example, the classical result given by Berk [3]

/VxH-?‘l-VxH*dQ

(10)
/Hﬁ&Fm

where the integration can be two-dimensional or three-
dimensional, depending on the specific problem. The
complex inner product is also directly related to the
energy concept in a lossless system.

On the other hand, a real inner product should be used
in the lossy case. The reason is that phase information
in the propagation constant will be lost in a complex
inner product formulation. Here, the primary concern
is anisotropic inhomogeneous lossy media. Therefore, a
real inner product is implied if not noted otherwise.
Choice of variational variables—magnetic field or elec-
tric field: When the permeability is homogeneous, the
divergence-free condition V - B = 0 can be reduced to
V - H = 0. Hence, the normal component of magnetic
field will be continuous at all points over the domain.
In addition, Ampere’s law in a source-free waveguide
will result in the continuity of the tangential component
of the magnetic field at all points over the domain.
Thus, it is convenient to use the magnetic field to set
up a variational functional when the permeability is
homogeneous and the permittivity is inhomogeneous. On
the other hand, the electric field should be used as the
variational variable when the permittivity is homoge-
neous and the permeability is inhomogeneous. Since the
former case is common, we will give the derivation of
the functional in terms of magnetic field. The functional
in terms of electric field can be found by duality. When
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3)

4)

the longitudinal part of the medium tensor is coupled
to the transverse part, the longitudinal component of
either magnetic or electric field has to be represented by
both the transverse magnetic and transverse electric field.
Therefore, the variational functional must be represented
in terms of both electric and magnetic field for this case.
Choice of variational variables—full vector or only the
transverse component: The functional in terms of only
transverse field has fewer unknowns in the resulting
matrix eigenvalue equation, but results in a more compli-
cated expression and involves additional differentiation
due to the incorporation of the divergence-free condition.
In this paper we will give both three-vector and two-
vector variational expression forms.

Variational stationarity of propagation constant vy: A
variational functional F, in terms of the field, does
not necessarily yield a variational expression for the
propagation constant . For example, the functional
defined by

F=(A-3,-7®,]4-®, —75,) (11)

will be stable about the true ficld solution of A - ®., —
4®, = 0. Since the first variation of the functional F'
can be written as

OF = <(5(A - (I)’Y - ’}’@7)|A : <p’)’ - 7®’Y>
+{(A- 2y —72,)|6(A- 2y —72,) (12)

we have 6F' = 0 when A- @, — y®., = 0. Since I' =0
when A - @, — v®, = 0, we have

(A-®, — 4B, A B, —7®,) = 0. (13)

Hence,
72 — <A ) q)'le : (I)'v>
(24]24)

However, 6y = 0 only when A* - &, — y®, = 0,
i.e., v is variational only when A is self adjoint. From
the above example, the < expression derived from a
variational formulation for the field is not necessarily
variationally stable. Thus it is important to show directly
the variational stability of ~.

We want to show that the following expression for
A, derived from the functional in (2) and eigenvalue
equation in (6), will always be variationally stable

y o KR4 X
(X31B - X»)
where X, satisfies A- X, — AB - X, = 0 with A and

B being either differential or matrix operators and A the
eigenvalue. The functional F in (2) can be written as

(14)

as)

F=(X3}|A-Xx—AB-X\) (16)
with
A*-X§—XB° . X3 =0 an
and where
A=A (18)

5)
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must be satisfied. Since F' = 0 when A- X, —-AB-X, =0
is satisfied, we have the result shown in (15). To show
that F' in (16) is variationally stable about the true field,
from (16), we have

§F = (6X$]A- Xx — AB - X))

+ (A% X3 — AB*- X&6X)).  (19)

Hence

§F=0 (20)

whenever (6), (17), and (18) are satisfied. Therefore,
F is variationally stable about the true field. To show
that the expression in (15) is variationally stable, with
A = (C/D), the following relationship is useful

C
A=65
_Cc+sCc ©

" D+6D D
_ CD+8CD - DC - C8D

(D + 6D)D

@1

Hence
S — 6CD — C6D
T (DxéD)D”

Keeping only first order terms, we have

6AD = 6C — AéD.

(22)

(23)
Using (15) and (23) we have
SMXSIB - X)) =86(X5|A- X)) — A(X%|B - X))
=(0X5|A - X)— AB- X))
—{X$|A-6Xy — AB-6X,)

=6F. 24

Since in general (X§|B - X,) # 0 [15], [16], we have
A =0 25)

whenever (6), (17), and (18) is satisfied. Therefore, the
cigenvalue (propagation constant) is variationally stable
about the true field solutions.

Existence of the adjoint field: Although the functional in
(16) always yields a variational expression for the eigen-
value ), the variational expression in (16) is meaningful
only when the adjoint field solution exists, as given by
(17). The adjoint field equation, (17), actually is not an
eigenvalue equation since it is restricted by (18), i.e.,
A% = X. We can still consider (18) as an eigenvalue
equation and solve for its eigenvalue. If A and B in (6)
are not self-adjoint, in general A may not be a eigenvalue
of (17). If X is not a eigenvalue of (17), the equation

A X§—AB*-X$=0 (26)

has only a trivial solution X§. Hence, (15) and (16) will
not be a variational expression in this case.

The functional in (16) works only when the eigenvalue
(6) and its adjoint (17) have identical sets of eigenvalues,
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ie., (18) is satisfied. This is the reason why Chen’s
technique [5], although intended for solving general
nonself-adjoint problems, in general works best for self-
adjoint operators in cigenvalue type problems, such
as those for wave propagation in lossless waveguides.
In lossless systems, the operator is self-adjoint using
complex inner product, therefore (18) is always true.
For a lossy nonreciprocal system, if the original and
adjoint waveguide, where the medium tensor is trans-
posed to that of the original waveguide, are mutually
bi-directional, (18) can also be satisfied. We will give an
example later in this paper. In the next section, we derive
the variational expression for the propagation constant
for general waveguides.

1II. DERIVATION OF THE VARIATIONAL
EXPRESSION FOR THE PROPAGATION CONSTANT

In the discussion of two-dimensional waveguide problems,
it is assumed that the current source inside the waveguide is
zero and the boundary is either pec (perfect electric conducior)
or pmc (perfect magnetic conductor) or at infinity. Again,
the field dependence is assumed to be €7 (wt=v2)  with z the
longitudinal direction. If the vector magnetic field is separated
into transverse and longitudinal parts, we have

H=h+H.2 (27

where h = H,% + H,§ is the transverse component. In the
same way, we have

E=e+ E,2 (28)
The media tensor is defined in matrix form as
= %‘tt gtz
€= {gzt 6zz:! (29)

where €, is a transverse dyadic, €, and €,; are vectors and
€., is a scalar. The definition for 7 is similar. In reciprocal
problems, these tensors are symmetric.

The following criteria have been adopted for the selection
of the operator representing Maxwell’s equations used in the
variational functional:

1) the operator is represented in terms of only transverse

fields,

2) the operator is self-adjoint in lossless system,

3) the operator will lead to a standard general cigenvalue
equation with the propagation constant appearing explic-
itly as the desired eigenvalue,

4) the operator can be used in lossy, inhomogeneous,
anisotropic reciprocal or nonreciprocal problems.

Let
e
o= [2]

Maxwell’s equations in operator form [15] satisfying the above
criteria can be written as

(30)

L®, — 4T, &, =0 G1)
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with
Ly Lo
I = 32
[LQI Ly 32
_ 1 . . I

Lll = WE — — Vt Xz z X Vt — W€y — €12 (33)

w MHzz €z2

1
Lis =~V X ; 2 X iy — €42 X — Vi (34)
1. L. 1
L21 = —Vt X —— Z X €3¢ — M2 X /j/— vt (35)
6ZZ zZz
_ 1 . . . N
Loy =wliys — - VX 5 —2%xVy— Wiy, fir. (36)
- 0 jEx 1T

.= Lé x I 0 ] 37

and T being identity operator. H, and E, are related to e and
h by

jw/"'zsz = _jwﬁzt -h + Vt ) (2 X e) (38)

jwesE, = —jwe, e — V- (2 x h). 39)
Premultiplying (31) with I', results in

AP, —~0,=0 (40)

with A =T, - L. Note that I", - T, = I. In lossless problems,
(31) is self adjoint with the choice of a complex inner product.
Therefore, we have

_ (@,)12,)

(@, [I. )

as the variational expression for v in lossless problems with
the choice of a complex inner product. In lossy nonreciprocal
problems, we have

(@3]2,)
(82|73,

as the expression for <, which is variational only if the
original waveguide and the adjoint waveguide are mutually
bi-directional. In lossy reciprocal problems, we have

_ (®|L®,)
{(2,IT2,)

as the expression for -y, which is variational only if the
waveguide is bi-directional. The reason that ®_., is the adjoint
solution for lossy reciprocal problems is explained in the
following paragraph.

The permittivity tensor and the permeability tensor of
the media are symmetric in lossy reciprocal systems. For
Maxwell’s equations, as represented in (31) and (6), A is self
adjoint and B* = —B. Here we have A = L, X = &,
A =,and B = I',. L is self adjoint with the choice of
a real inner product when the medium tensor is symmetric
[15]. We also have I'? = —I", with the choice of a real inner
product. The set of eigenfunctions for (6) is identical to the
set of eigenfunctions for (17) with X¢ = X_j and A* = A
Hence, we have

(X4~ X))

A= ———(X_A|B X (41)
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with the choice of a real inner product in lossy reciprocal
systems.

IV. ADJOINT SOLUTIONS FOR LOSSY PROBLEMS

In the following, the expression for the adjoint field for
lossy systems will be given. The eigenmodes in the adjoint
waveguide and the eigenmodes in the original waveguide
satisfy the orthogonality relationship [15]

byp = 1(v = )
" 5y =0(v # B)

where N, g is some constant. Assume an normalized set such
that Ngg = 1. From the orthogonality relationship in (42),
we have

(L. 95]|®,) = N6 42)

|¢’7> = Z (q)'v|q)ﬂ>|rzq)?3>~ (43)
8
From (43), we have
@°) =1,D'|@)
with
Dij = (®,|®;) (44)

with as long as D is nonsingular. In general, relationship
(44) holds even for nonreciprocal (lossy, anisotropic and
inhomogeneous) waveguides. However, (44) is not useful or
necessary in actual numerical calculations. If the adjoint field
does exist, we can represent the original field as well as the
adjoint field as a linear combination of basis functions with
unknown coefficients. By taking the variations with respect to
the adjoint field, the resulting matrix equation will contain only
the unknown coefficient of the original field. This approach is
variational only if the adjoint solution exists. The existence
of the adjoint solution relies on the matrix A in (44) being
nonsingular, which is not always known a priori.

For reciprocal problems, it has been shown [17] that the
relation between X, and X _ can also be found if the wave-
guide possesses one of the following symmetries: reflection
symmetry in a plane perpendicular to the waveguide axis;
180 degree rotation symmetry about an axis perpendicular
to the waveguide axis; inversion symmetry in a point on
the waveguide axis. With the medium tensor in the form of
(29) and &, = €t,, iy, = ji%,, the field with a propagation
constant —v can be found by the transformation relations of
the field under a symmetrical operation. First, considering the
waveguide with reflection symmetry, we have

E_y=Ey (2, y, —2)8 + Ey,y(z, y, —2))
- Ery,z(a;- Y, "'Z)é
H_,=-H, ,(z,y, —2)% — Hy y(z, y, —2)}

+ H’y,z(xa Y, ‘z)é (45)

with E., . representing the x component of the electric field
and likewise for the other field components. Second, consid-
ering the waveguide with rotation symmetry about the x axis,
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we have

E—’Y :E’Y,w(xa -Y, "Z):i‘ - E’Y,y<w7 - —z)g}
- E’y,z(xu =Y, _'Z)'2
H_, =H, .(z, ~y, —2)& — H, y(x, ~y, —2)§

- H’y,z(xa =Y, —2)2 (46)

Next, considering the waveguide with inversion symmetry, we
have

E*’Y = '—E%w(_xv -Y, —Z).’i‘ - E’Y:?l(_m’ ~Ys —Z)ﬂ
- E’y,z(_ma -Y _Z)”g

H ,=H, (-, -y, —2)i + H, ,(—z, —y, —2)3

+H, (—z, —y, —2)Z. 47
Hence, (41) can be written as
(@_,|L9,)
y o= 48)
<(I)—’Y|I‘Zq)’y>

with ®_., given by (44)—(47). The formulation in (48) has the
following properties:

1) It contains second order derivatives in space. Higher
order interpolation functions, which are second order
differentiable, are commonly used in many problems
such as waveguides with convex polygon shapes [18]
and surface modes in microstrip [19]. Even with these
higher order elements, lack of continuity in the first order
derivative between elements may be problematic in the
case of second order derivatives in the functional. The
second order derivatives can be reduced to first order
derivatives using integration by parts, as shown later in
this section.

2) The formulation is represented by only transverse fields.
The longitudinal components will be given by Faraday’s
and Ampere’s law, represented in (38) and (39), re-
spectively. Hence, the divergence-free: condition will be
satisfied since B or D will be represented as the cuirl
of a vector.

3) The permittivity and permeability tensors can have all
nine components in the formulation. In reciprocal sys-
tems, the material tensors must be symmetric. There
are no other restrictions on the elements of the material
tensors in (48) as long as the waveguide is bidirectional.
The material tensors may be complex, functions of
frequency, or functions of position. Hence, (48) can
be applied in lossy, inhomogeneous, anisotropic recip-
rocal problems. Note that if the symmetric conditions
(45)—(47) are used, the material tensors will have the
same restrictions.

4) The variational expression is in the form of standard
generalized eigenvalue equation where the propagation
constant appears explicitly as the desired eigenvalue.

Each of the variational formulations proposed previously

has more restrictions than (48). These restrictions can be
classified into the following three types:
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1) variational formulations which are restricted to lossless
media [3], [9], [10];

2) variational formulations which only apply to media with
the longitudinal part of the medium tensor decoupled
from the transverse part [7]-[9];

3) variational formulations which do not enforce the
divergence-free condition [3], [6].

Hence, we have derived in (48) for the first time a varia-
tional formulation for the propagation constant satisfying the
divergence-free condition in lossy inhomogeneous anisotropic
yet reciprocal waveguides whose media tensors have full
nine components as long as the waveguide is bi-directional.
With X§ replacing X_» in (41), the formulation in (41)
is variational even in lossy nonreciprocal problems as long
as the waveguide and its adjoint waveguide is mutually bi-
directional, which is equivalent to the condition that the matrix
D in (44) is nonsingular.

For some applications, it is not preferable or necessary to
avoid the previously mentioned restrictions. We will derive the
corresponding variational formulations for such applications.
Even with the same restrictions with a decoupled longitudinal
part of the medium tensor, the following derived formulations,
which can be used in more general problems or yield a
better approximation for the propagation constant, will have
some advantages over the corresponding formulations in the
literature.

When the transverse part of the media tensors are decoupled
from the longitudinal part, i.e.,

= |ew O
€= |TO ezz}
=_ |fyg O
=i ]
we can derive a variational form for 72 in terms of only h.

By using the relationship V - B = 0, we can represent H,
in terms of h

(49)

3.7 '3V, -%-h
el '

H,= (50)

By using (3) with (50), to represent H, in terms of h, and
premultiplying (3) with g - Zx, we get [8]

=

N XD —3XV,3-T L8V, T-h— w5 x

‘h—%.4xV,xe 1.V, xh=0. (51)

Note that (51) is a form of (6), which can be expressed as
A-hy —~+2B-h, = 0. Hence, from (15) we have

o (34 hy) -
(h3]B i)

Using the result in [8], we have h?y = e,. The transverse

electric field, e., must satisfy

1

. Vt — Vt . (2 X h)

e, = — ez . (53)
¥ Yw
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Thus, after some manipulation of (53), we have for
2 fesld )
{e4|B-h,)
— 1
<—w2éx—ﬂh—vt6—vt(éxh)lz4h7>

_ 1 .
(—w2~2xﬁ-h—vte—vt~(2xh)|2><h,y)
~ (54)

Equation (54) is in the form of standard generalized eigenvalue
equation where the propagation constant appears explicitly
as the desired cigenvalue. The longitudinal components of
electric and magnetic field will be given by the divergence-
free condition. The divergence-free condition is enforced in
(54). Davies has given a formulation similar to (54) which
does not apply to media with inhomogeneous permeability
[71. On the other hand, (54) works for the case of media with
inhomogeneous permeability and permittivity as A contains
spatial derivatives of permeability.

The formulation given in (54) contains second order deriva-
tives in space. In (54) the second order derivatives can
be reduced to first order by integration by parts if (54) is
represented in terms of both e, and h. In reciprocal systems,
the material tensors must be symmetric. There are no other
restrictions on the elements of the material tensors. They may
be complex, functions of frequency or functions of position.

We can also give the variational expression in terms of full
magnetic field. It will be also possible to reduce the second
order derivative in space to a first order derivative. In the
following derivation, we again assume that the transverse part
of the media tensors are decoupled from the longitudinal part,
as in (49). Using (3), (5), (50) and the adjoint field solution [5]

HS=h,-H.2 (55)

we have

¥ =(-2{xh,[g7" -V, x 2 V:-E-h,)

— (Ve xhy[e™! -V, x H,3)
+ (Ve x H3[E™1 -V, x H,3) + (b, |0’ - hy)
— (H AW - H.8) /(2 xhy[e 7t 2 xh,). (56)

Davies [6] has derived a variational formulation for the propa-
gation constant in terms of full magnetic field vector. However,
(56) will yield a better approximation for the propagation
constant since the Euler equation of Davies’ formulation (37)
in [6] is not the vector magnetic field equation [12]. (56) is in
the form of standard generalized eigenvalue equation where
the propagation constant appears explicitly as the desired
eigenvalue. Spurious modes can occur in using the functional
given in (56), since the vector that satisfies (56) does not au-
tomatically satisfy the divergence-free condition. The penalty
parameter method [11] can be used to remove the spurious
modes. The second order derivative in (56) can be reduced
to first order using integration by parts. The elements of the
material tensors may be complex, functions of frequency or
functions of position.
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If the system is lossy and nonreciprocal, the derivation of a
adjoint solution must be investigated for each specific problem.
We give an example for such waveguide.

With the choice of a real inner product, the adjoint field
must satisfy Maxwell’s equations with transposed permittivity
and permeability tensor and with propagation constant —-y
[15]. This requires that the original and adjoint waveguide be
mutually bi-directional [17]. Assuming that the media tensors

are of the form
= 2 &
= f'tt tz
—€ir €2z

= ﬁtt /th
# l:—/i 2z Hozz :l
with € and 7z,, symmetric, the adjoint field will be mutually

bi-directional to the original waveguide and can be written as

(5]

(67

Ef =-e,+FE.z2

H: =-—h,+ H,2. (58)
Hence
(83| L2,)
Y= Tt (59)
(®s|T', 2s)
with
a __ ‘e'y
%= L] 0

The material tensor of transversely DC magnetized, low loss,
magnetically-saturated ferrites is of the form (57) [16]. The
formulation given in (59) works for a lossy nonreciprocal
media as long as the adjoint solution exists. For this specific
waveguide problem, Chen has derived a variational formula-
tion [(43) in [5]], which does not satisfy the divergence-free
condition, to demonstrate the application of his variational
technique. On the other hand, the divergence-free condition
will be satisfied in using (59) since the longitudinal component
E, and H, are given by divergence condition using transverse
field and from solution of (59).

V. REDUCTION OF THE SPATIAL DERIVATIVE
OF THE VARIATIONAL FORMULATION

In the last part of this paper, the second order derivative
term in the variational formulation will be reduced to first
order derivative. By the utilization of the vector identity

/A-Vthdszj{BxA-ﬁdl

+/B~Vt><Ads 61
where 7. is the unit normal vector, the second order derivative
term in the functional can be reduced to first order derivative.
In addition, the boundary line integral in (61) vanishes with the
application of suitable boundary conditions. For example, the
functional in (48) has second order derivatives in the L;; and
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Lo terms. With the adjoint solution ®_.,, the second order
derivative term in Lp; can be represented as

1 1

/e_»Y'—VtXZA‘ éxvt-evds. (62)

w Pz

Using (61), (62) can be transformed to
1,1 |
/Vt X€e_ - ;ZMZZZX Vt'e7d8
R 1,1
+ P f-e_y X =2 2 X Vi-eydl. (63)
W s

Similarly, the second derivative term from Lyy can be reduced
to first order derivative. The term in (A3) involving line
integrals vanish if there is a pec or pmc at the boundary or if
the boundary is at infinity [8]. For the variational expression in
(54) with the substitution of (51), the second order derivative
terms can be represented as

/e-zxvtz-ﬁ—l.évt.ﬁ.hds (64)
and
/e.%.zxvtx%—lvtxhds. (65)
Using (61), (64) can be transformed to
—/Vtxe-éé'ﬁ_1~évt~ﬁ-hds
—}{ﬁ‘exééﬁ‘l-évt-ﬁ-hdl. (66)
Using (A1), (A7) can be transformed to
—/?‘lvtxhvtxéx?-eds
—y{ﬁ-%—lvtxhxzx%-edl. (67

Again, the terms in (66) and (67) involving line integrals
vanish with a pec or pmc boundary or if the boundary is at
infinity. For the variational expression in (56), the second order
derivative term can be represented as

(68)

- 1
—2/2xh7-z-1-vtx2

Mozy

Vt-ﬁ-h7ds.

Using (61), (68) can be transformed to

—2/2 L v, % h, VexE' xhyds
Hzz

—Qj{z 1 V- T-hyxe 1 -2xh, - -adl. (69)
Pzz



1772

VI. CONCLUSION

We have derived a variational formulation for the prop-
agation constant satisfying the divergence-free condition in
lossy inhomogeneous anisotropic reciprocal or nonreciprocal
waveguides whose media tensors have all nine components.
Several variational formulations for the propagation constant
for waveguides where the longitudinal part of the medium
tensor is decoupled from the transverse part have already been
proposed in the literature. However, applied in finite element
methods, the new formulations will have several advantages
over previously published formulations. All the variational
expressions are in the form of standard generalized eigenvalue
equations, where the propagation constant appears explicitly
as the desired eigenvalue. It is also shown that for a general
lossy nonreciprocal problem the variational functional exists
only if the original and adjoint waveguide are mutually bi-
directional. On the other hand, for a general lossy reciprocal
problem the variational functional exists only if the waveguide
is bi-directional.
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